Tunable depolarized light scattering from gold and gold/silver nanorods.

نویسندگان

  • Boris Khlebtsov
  • Vitaly Khanadeev
  • Nikolai Khlebtsov
چکیده

We combine the fabrication of Au and Au/Ag core/shell nanorods (NRs), as well as experimental measurements of vis-NIR extinction, unpolarized, and cross-polarized light scattering spectra, with T-matrix and separation-of-variables simulations, to gain insight into the relation between the morphology/composition of nanoparticles and their isotropic and anisotropic optical responses. Using several Au and Au/Ag core/shell NR samples, we present unambiguous experimental evidence of a tunable correlation between the longitudinal plasmon resonances of NRs and their spectral depolarization maxima. For gold NRs, the depolarization maxima follow the extinction plasmon resonances blue-shifted from 80 to 270 nm. In contrast, the depolarization maximum of Au/Ag NRs is located just near the longitudinal resonance, and the spectral shift of the depolarization maximum is about 10 to 20 nm. The experimental extinction and depolarization spectra of gold NRs are in good agreement with T-matrix simulations based on TEM-fitted models that account for the aspect ratio polydispersity and byproduct contributions. For composite Au/Ag NRs, the separation-of-variables simulations provide a calibration curve that correlates the relative spectral shift of the extinction resonance with the silver shell thicknesses and generates experimental data that are in good agreement with estimations based on the Ag/Au mass ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances

Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface...

متن کامل

Gold nanorod light scattering labels for biomedical imaging

Gold nanorods can be used as extremely bright labels for differential light scattering measurements using two closely spaced wavelengths, thereby detecting human disease through several centimeters of tissue in vivo. They have excellent biocompatibility, are non-toxic, and are not susceptible to photobleaching. They have narrow, easily tunable plasmon spectral lines and thus can image multiple ...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Robust multilayer thin films containing cationic thiol-functionalized gold nanorods for tunable plasmonic properties.

Gold nanorods have great potential in a variety of applications because of their unique physical properties. In this article, we present the layer-by-layer (LbL) assembly of thin films containing positively charged gold nanorods that are covalently functionalized by cationic thiol molecules. The cationic gold nanorods are uniformly distributed in ultrathin nanocomposite LbL thin films. We studi...

متن کامل

Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres.

The surface plasmon enhanced hyper-Rayleigh scattering light collected from an aqueous solution of gold nanorods is reported. A non negligible part of the signal is attributed to a photoluminescence background attributed to the electron hole recombination following multiphoton excitation of d-valence band electrons into the sp-conduction band. This radiative relaxation process is likely favored...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 13  شماره 

صفحات  -

تاریخ انتشار 2010